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C O N S E R V A T I O N  L A W S  A N D  S H O C K  W A V E S  I N  T H E  
T H E O R Y  O F  R E L A X A T I O N  H E A T  T R A N S F E R  

O. N. $hablovskii UDC 536.2.01 

A set of  divergent forms of  heat-transfer equations are presented. New laws are established that govern the 

behavior of  the temperature field behind the front of  a strong discontinuity. Comparison of  theoretical and 

experimental data on the propagation of nonlinear waves in a sapphire crystal and liquid helium is carried 

out. 

The study of nonlinear transfer effects in locally nonequilibrium systems continues to be a topical problem. 

In the present work we investigate heat transfer in a stationary medium on the basis of a Maxwell relaxation model 
that consists of an energy equation and a heat-flux equation: 

dT Oq vq 
c ~ - + - ~ x + - - = q v ' x  v = 0 , 1 , 2 " ,  (1) 

Oq _/~ OT 
q + Y  07=  '~-x' '~ = ~" (73, c =  c ( T ) ,  qv= q v ( T , x , t ) .  (2) 

A justification of model (1), (2) and a bibliography on the subject are given in [1, 2]. The present work is a 

continuation of investigations [3-6 ] into the theory of thermal shock waves. It aims at: 1) constructing divergent 
forms of equations that express certain typical conservation laws of relaxation heat transfer; 2) revealing new, 
substantially nonlinear properties of thermal fields that contain strong discontinuities; 3) comparing theoretical 
calculations with experimental data on propagation of heat pulses in a sapphire crystal and liquid helium. 

1. Divergent Forms of Heat-Transfer Equations. For smooth temperature fields (T, q E C1) differential 
equation (1) follows from the integral energy conservation law: 

; u d x  - ; q d t  = - f f  xVqvdxdt,  
K G K 

(3) 

where K is an arbitrary closed piecewise-smooth contour; GK is the region limited by this contour in the plane x, 
t. Any solution of Eq. (2) satisfies the following integral conservation law 

~) qdx - Ldt  = f f  (q /y )  d x d t ,  (4) 
K G K 

2 
3 = c ( 7 3 ,  L ( u )  = w 2 u) ,  w v(7") = L ( u ) .  

The conditions of dynamic compatibility across a strong discontinuity x -- xj(t) of a thermal field are derived in the 
ordinary way [71 from Eqs. (3), (4) and have the form [3, 4] 

dx/ 
N{U} = {q}, N{q} = {V}, N =  dt " (5) 
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The first of these relations expresses a consequence of integral conservation law (3), while the second relation is 
obtained from integral formula (4). 

From the theory of generalized solutions for systems of quasilinear equations [7 ] it is known that the 
physical content of various phenomena can be determined by the same differential equations. The difference of 
these phenomena from one another is established only by discontinuity solutions, since differential equations can 
result from different integral conservation laws. From this viewpoint, of interest are additional (differing from Eq. 
(4)), conservation laws for processes of relaxation heat transfer. 

The change from the integral mode of writing equations (for example, Eqs. (3) and (4)) to the differential 
one is made with the help of Green's formula, after which we obtain divergent equations of the form 

O~ OF 
0-7- + ~ = S ,  (6) 

which represent conservation laws written in terms of differential equations; the functions ~ ,  F, and S generally 

depend on T, q, x, and t. Here, following the commonly accepted approach, an extended interpretation of the term 
"conservation law" is applied for S ~ 0, since the conservation of corresponding quantities is ensured only at S = 
0. We also assume that across the discontinuity the quantity S has no singularities of the delta-function type. The 

condition of dynamic compatibility, corresponding to Eq. (6), across a strong discontinuity has the form 

Mathematically, the hyperbolic system of quasilinear equations (1) and (2) is close to the equations of nonstationary 
gas dynamics, for which the problem of constructing conservation laws has been investigated in detail (a history 
of the problem and bibliography are given in [7-9 ]). Leaving aside the search for a mathematically complete set of 

divergent heat-transfer equations, we will indicate here the conservation laws of the type of Eq. (6) that are most 
interesting from the thermophysical viewpoint: 

I. v = O ,  ~ = u q ,  F =  u L - L  1 + ~ - ,  S = q  q v -  , /'1 (u) = L ( u ) ;  (8) 

II. v = 0 , 1 , 2 ,  ~ = x  v L I +  , F = x V q L ,  S = x  v Lq v -  ; (9) 

III. v = 0 ,  r  F = / ~ - l b C ,  B = B ( q ) ,  C = C ( u ) ,  

S =  CBq v -  CB q ,  "B =,uB , t.tCw 2 (u) = C ,  /~ =cons t  ~ 0 ,  

where B(q), depending on the sign of the arbitrary number/~, represents a sine function or an exponential function; 
in an important particular case, when 

2 
w = w I + 2w2u, (10) 

the function C(u) is expressed in terms of Bessel functions. 
The class of nonlinear media that satisfy Eq. (10) comprises two variants: 1) wl - 0, i.e., the parameters 

) t - u  dl, c - u  d2, ~ - u  d3, which are the uniform exponential functions of temperature, d I = 1 + d 2 + d3; for 

example, the values of dl = 5/2, d2 = 0, d3 - 3/2 corresponu completely to an ionized plasma; travelling waves and 
discontinuities in such a medium were studied in [1 ]; 2) the linear dependence of the thermal conductivity 

coefficient on temperature 

2 =21 + 2~2T; c, 7 - c o n s t ,  (11) 
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and this approximation can be applied to many substances. 

For a medium with the properties contained in Eq. (10) the following conservation law is available: 

IV. ~ = a l q + a  2 ( u + q ) 2 + a 3 ( u + q ) 3 - u  [2a 2 ( u + q )  + 3a 3 ( u + q ) 2 ]  _ 

I )o4 -6a3h+ [2a 2 + 6 a  3 ( u + q ) ]  L 1 + ~ - +  ; 

F = LA 1 + 6a3L 3 + 6a3a4L ; A 1 = a I + 2a2q + 3a3 q2 , I'3 (u) = w2L1, 

3 

u l (u) = uw 2 ( u ) ,  M1 (u) = M ,  h = M 1 + 21.. 2 + a4u + ~ - ,  

L2 (u) = L I ,  S = qv L (2a 2 + 6aaq ) - 7 ~ [.41 + 6a 3 (L 1 + a 4 ) ] ,  

a 1, ..., a 4 -- const ; 

2 2 
V. w = r exp ( -  2 r u ) ,  E = exp ( r u ) ,  r ~ 0 ,  z = q E ;  

1) Izl < 1, ~ = a  l a r c s i n z ,  F = - a l r E  - l ( 1 - z 2 )  1/2,  

S:a ,  . ,  

2) ~ = l n ( y + z ) ,  F =  + r y E - I  z2 , Y - - - -  ( - -  1) 1/2 - - -  , a 1 , r - c O n s t ,  

- I  
S =  ++. z (rq v -  1) y , 

where the sign "+"  is taken when z > 1 and " - "  when z < - 1 .  

If ; t ( T ) / c ( T ) y ( T )  = w 2 =- const (in this case a thermal shock wave does not appear [3, 4 1), there is the 
following conservation law: 

VI. ~ = A + B , A = A (q + wu)  , B = B (q - wu)  , 

where A and B are arbitrary functions of their arguments. Relations I-VI were found with the help of the so-called 

direct method [8 ]. Conditions of dynamic compatibility (7), obtained from divergent equations I-V, can serve as 

a means for controlling the accuracy of numerical calculations of relaxing thermal fields with strong discontinuities. 
2. The Properties of Discontinuous Thermal Fields. We will consider thermal shock waves that propagate 

through a uniform thermal  field u. = const ,  q. =-0. According to Eqs. (7) and (8), a flux of magn i tude  
M + (q2/2) moving through a discontinuity with velocity N is equal to Pl iN) -- (q2/2) + u L  - LI  - N u q ;  moreover, 

from Eq. (5) it follows that d P 1 / d ( N  2) = (u  - u.)2/2.  In the case of Eqs. (7) and (9), a flux of magnitude q L  

through a discontinuity is equal to P2(N) = q L  - N ILl - L1 .  + (q2/2) 1, d P 2 / d N  = q2. 

We will wri*~ conditions (5) as: 

q j  - -  q .  = N ( u j  - u. ) ,  N 2 = ( L j  - L . ) / ( u j  - u.) (12) 

and consider the Hugoniot line, which in the gasdynamic theory of shock waves is an analog of the Hugoniot 
adiabatic: 
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Fig. 1. Properties of thermal  field behind shock waves of cooling and heating: 

a, b) entropy production; c, d) square of heat flux behind discontinuity f ront  

and on Hugoniot lines. 

H ( q ,  u; q0' Uo) ~ ( L -  L0) ( u -  u0) - ( q -  q0) 2 = 0 ,  (13) 

where H is a function of the arguments q, u; it depends parametrically on qo, uo. The  points q, u and q0, uo 

characterize the thermal state of the substance on both sides of the discontinuity. In the temperature  range in which 

the speed  of the propagat ion  of thermal  per turba t ions  is a monotone  decreas ing  funct ion  of t empera tu re ,  

iv(T) < 0, the formation of a shock wave of cooling is possible, and the formation of a shock wave of heating if 

~(T) > 0 [3, 4 ]. The  expression for the production of entropy in a period of 1 sec per unit volume is of the form 

I10] 

o ' =  q + y - ~  -~x " 

Next,  we will present the results pertaining to a one-dimensional  case with plane symmet ry  (v = 0) ; in the 

case of cylindrical and spherical symmetries  the qualitative content of the final formulas is the same. For the 

thermophysical  parameters  we take conditions (11): this variant contains basic information on the nonlinear 

properties of the medium, and the analytical calculations are ra ther  simple. Using the formula obta ined in [5 ] for 

(Ou/Ox)h behind a discontinuity front moving with a constant velocity we find 

cr = d t q 2 / [ y 2 u 2  (w 2 - N2)21, q0 = 0 ,  N = cons t .  (14) 

Analysis of Eq. (14) shows that in the case of a shock wave of cooling (2 2 < 0, T < T 0) the function a (T)  is 

monotone decreasing (Fig. la ) ,  b(T) < 0, a (T)  > 0. In a shock wave of heating (22 > 0, T > TO), the behavior of 

cr(/3 is determined by the character  of the function 2 ( /3 .  

Suppose approximation (11) is applied in the temperature interval T E [T1, T 2 ], and,  moreover,  2 (T  2) -- 

bp~(Tl), T2 = b2T], bl > 1, b2 > l; for the sake of definiteness we assume that Tl = TO. It turns out that  cr = e (T)  is 

the nonmonotonic function that has a maximum at T = To: 

T o / T  o = 2b 3(1 - 2 b 3 ) / ( l - 3 b 3 ) ,  b 3 = (b 1 - b2 ) / (b  1 -  1).  

If the thermophysical  properties of the medium are such that To < To --- T1, then in the tempera ture  region behind 

the shock wave front  the function a(T)  is a monotone decreasing function; when To > T2, the function a ( / 3  

increases monotonically. Moreover, if the number  bl satisfies the inequalities (4b 2 - 1 ) /3  < bl < (362 - 1 ) /2 ,  then 

we have To < To < T2. Consequently,  in this variant the ent ropy production is an inmonotonous  function of 

temperature  (Fig. lb) .  The  function q2(/3 on the Hugoniot line in a shock wave of heating is a monotone increasing 

f u n c t i o n ,  w h e r e a s  in the  case  of shock  cool ing  it is a m o n o t o n e  d e c r e a s i n g  f u n c t i o n ;  in bo th  cases  

d 2 ( q 2 ) / d T  2 > 0. At the point T = T o the Hugoniot lines touch the T axis; in Figs. lc and ld  these are the dashed 

curves; shown also by solid curves is the family N 2 -- const. 
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Fig. 2. Isolines of entropy production behind shock wave front: a) heating; b) 

cooling. 

Now, we will consider the family of isolines a = const. In a wave of heating the function q2(T) is a monotone 

increasing function; it is convex downward (Fig. 2a). The  behavior of the a-l ines in a wave of cooling is i l lustrated 

by Fig. 2b. Assume that 

T= Tq: 

T E  [TI, T 2 ] ,  ) [ (Tl )  = d12(T2) ,  T 1 = d2T 2, d I > 1,  0 <  d 2 < 1,  T O = T 2 > T .  

Analysis of formula (14) shows that on the line 6 = const the function q2(T) has a maximum at the point 

d 2 <  Tq 1 [ ] 2 ( d l - d 2 )  
TO = ~ 1 + 2d a - (4d~ - 8d a + 1) 1/2 < 1 ' d3 - (d! - 1) ' 

and,  these  formulas  have a physical meaning if the nonl inear  propert ies  of the medium are  such that:  1) 
0 < d2 --- 1 /2 ,  dl > 1; 2) 1 /2  _< d2 < 2 / 3 ,  d l >  d2 / (2  - 3d2). Under  these conditions on the line a = const in the 

region behind a wave cooling front the function qZ(T) is nonmonotonic. In the class of media (12), when 22 < 0, 

a monotonic variant is absent  for q2(T) on the 0-1ine. 

3. Heat  Pulse in a Sapphire Crystal.  The  temperature dependence of heat pulses in sapphire is investigated 

experimentally in [1 1 ]. We will consider the evolution in time of a pulse received at the isothermal boundary  of 

the crystal for temperatures  of 6, 18, and 23 K, beginning from t = 1.5/~m, wh~t  the image of the normalized 

amplitudes of the pulses observed becomes distinct. It turns out that the specific features of the change with 

temperature  in the pulse shape obtained in the experiment are described qualitatively by an exact solution [ 1 2 ] of 

heat- t ransfer  equations (1) and (2): 

(u + kl) 
f l  + ~ ( 0 9 ) ,  o 9 - - - ,  r = e x p ( -  t /7 ) ,  x ( u ,  T)  - (u + kl) r 

7q (U, Z') = f l  -- Z'~ (09) + (/./ + k l ) ~  (09),  a = a I (tt + k l )  - 2  a17 = f l  2 

a t, kl, y - cons t ,  

where ~(w) is an arbi t rary function. In fact, let the heat flux qo(r) = q(u0, r) on the isotherm T O - const, u0 = 

u(T o) be known from the experiment.  Then,  we can easily find the function 

(09) -- (U 0 Jr k l )  (u 0 Jr k l )  Jr f 0/QO - f l )  do) 
u 0 + k  1 

where the dependence  Qo = Qo(w) is obtained from qo(T) by replacing �9 by the argument (u o + kl)/09. When 

T E [To, T] ], the heat flux has the form 
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Fig. 3. Shape of the 

cl k a t  T " 6 K 

! 

b 

c 

heat pulse on isotherms in sapphire crystal. 

f l  I U + k I / (u + kl) (u~ + kl) ~ (15) 
q=-~- 1 Uo + ~- + (uo + kl) qo (tg), t g -  ( u + k l )  

/ 

In order  to obtain an expression for q(u, r ) ,  when T E [TI, T2], we proceed in a similar way. It is only 

required to redetermine the parameters a l ,  kl, f l ,  which characterize the thermophysical  properties of the medium 

in this temperature  interval. As a result, we have 

/ ) (u + kll) (Ul + kll) r (16) f l l  u + kll  + q01 (z) z - 
q = - 7 -  1 u I + k l l  (u 1 + k l l  ) ' ( u + k l l )  ' 

where ul = u (Tt ) ;  k l l , / 11  are the new values of the constants. The function qo(O) should be written separating 

explicitly the argument 3, which subsequently is replaced by z; this gives the function qol (z). 

Let us give an example. We take temperature TO = 6 K as the initial one. The  shape of the heat pulse on 

this i so therm will be t aken  in a form similar  to the expe r imen ta l  one  (Fig. 3a): qo(t) = A2T exp (B2t) - 

Alt exp (Bit), t >_ 0; A1 -- 108.7; Bl = 40; A2 = 40.77; B2 = 10. As the scales of the thermophysical  parameters  for 

dedimensionalization, we use their values at T = 20 K. The  absolute value of the number  kl should be ra ther  large; 

when c -  T a, this ln ,kes  it possibile to assume for the thermal  conductivity coefficient that 2 - 7  a ,  i.e., that 

2/c  -const.  When 7 --- const, in this class of solutions we obtain a velocity of propagation of thermal  perturbations 

that is nearly constant,  w 2 - c o n s t ,  which is satisfied for sapphire [11 ] at temperatures of from 4 to 40 K. Fur ther  

we assume that a --- 3. In the range of from 6 to 18 K we take kl = 5, [l  = 7.4566, and 7 = I; the results of calculation 

by formula (15) give the expression 

q 1 = - 0 . 2 3 8 6 + 1 . 0 3 2  [(AIOB1-- A2OB2) In O -- 0.2] , t9 0.96863~-, 

and these results are shown in Fig. 3b. For the second temperature interval of from 18 to 23 K, we must take kll  

= 90, f l l  = 90.25, 7 = 1, All  = 30.38, A21 = 29.64, and z = 0.996981T, 

= - 0.2733 - 1.003 I0.2 + (0.035 + t)(All  zBl + A21zB2)]. q2 

This relation is shown in Fig. 3c. The  influence of temperature on the shape of the heat pulse obtained theoretically 

is similar to that observed in the experiment: as the temperature increases, 1) the peak of the maximum decreases, 

and 2) on at tainment of the maximum, the passage of q(t) through zero occurs more rapidly. 

4. Heat  Pulse in He II. Nonlinear second-sound waves in liquid helium have been investigated theoretically 

and experimental ly in many works (a history and bibliography of this problem are given in [13, 14 ]). In the context 

of the hyperbolic heat conduction equation, some problems of the propagation of thermal perturbat ions in He II 

are stated in [15 ]. We will consider two series of experiments [16-18 ] with shock waves in He II. In [16 l, using 
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Fig. 4. Second-sound shock wave in He II, comparison with experiments: a) 

[18 ]; b, c) [17 ]. The solid curves denote calculation by formulas (17); the 

dashed curves denote the theoretical relation of [16]. T, K; q, W/cm2; N, 

m/see.  

the Burgers equation, the relationship between the radiating pulse power and the shock wave velocity is calculated, 

and comparison with the experiments of [17 ] is performed. The dependence of the temperature pulse amplitude 

on the radiator power is determined in [ 18 ]. 
We will describe the propagation of second sound that represents a temperature wave [13, 14 ] by heat- 

transfer equations (1) and (2). In the experiments of [16-18 ], a second-sound pulse was excited and  a strong 

discontinuity in the temperature field appeared that moved from the source of perturbations to the signal detector. 

We simulate this strong discontinuity at t = 0 by conditions of dynamic compatibility (12), to which it is necessary 
to add the stability condition w. 2 < N 2 < w~ [6, 71. Then the heat flux qj should be interpreted as the power of the 

radiated pulse and (7"/-  T.) as the initial amplitude of the temperature pulse that propagates through the uniform 

background T. -- const, q. - 0. 
The thermophysical  properties of helium are taken from [19 1. The units of measurement  are: sec, 

J / cma 'deg ;  2 /7 ,  W/cm.sec .deg ;  q, W/cm2; N, m/sec; T, K. In performing a comparison with the experiments of 

[16-I8 ], the following should be kept in mind. For He II in the case of second sound, shock waves of heating are 

observed when 1 < T < 1.88 K. This range is wider than the region T E (1.2; 1.65) of a monotonic increase in the 

function w2(T), where, according to model (1), (2), and (12), the formation of shock waves of heating is possible. 

Therefore, in order to coordinate model (1), (2), and (12) with the experimental data of [17, 18 ], we will take 

into account that 2 / 7  increases monotonically when T E (1.2; 1.95) and assume that  u j -  u. = "~(Tj - T.) ,  
~ ' -  const. If we admit, for example, that at T ~ [T., 7"i ] the heat capacity c = pCp depends linearly on temperature,  

2 will be taken f rom the t hen  ~" = (c. + cj)/2. The remaining parameters ,  namely,  w 2 c -  2 /7  = xo Tnl, w., 

experimental data of [ 19 ]. 

Then Eq. (12) will take the form 

qj = U(Tj - T.) N ,  

l + n ,  
u 2 = ( r )  , - rl.+n )/[Z(Tj - r . ) ] ,  tr 0 

/ r  
1 + n  I 

(17) 

where ~'serves as the parameter of agreement between the theoretical and experimental data. We also note that 

formulas (17) do not contain exlicitly a numerical value for the time of thermal relaxation. Figure 4a presents a 

comparison at T. -- 1.79 K of calculations performed on the basis of Eq. (17) (solid curve) with the exper imenta l  

values of [18] (points). Calculations were carried out at ~'= 0.41, w. -- 19.947. If T E [1.75; 1.80 ], we have n[ -- 

3.9443; x -- 33,148.006; c 1 E [0.3655; 0.4211 ]. For ease of representation, here and below we indicate the interval 

in which the experimental value of the heat capacity c 1 changes. In Figs. 4b and 4c the experimental data  of [17 ] 

at four values of T. are marked by points, theoretical calculations from [18 ] are represented by dashed curves, 
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and calculations by the formulas of [ 17 ] are represented by solid curves. The calculations were carried out at the 
following values of the parameters: 

1) T. = 1.609; b"= 0.2365; w.-, 20.3784; x = 13,332.8; nl = 5.2192; T E [1.60; 1.651, c I E [0.2322; 0.2716]; 

2) T. ~" 1.677; b"= 0.2932; w, = 20.4; x = 16,502.672;  nl = 4.8989;  T E  [1.65; 1.70], 
c I E [0.2716; 0.3161 ]; 

3) T. = 1.759; b "~- 0.3725; w. = 20.157; the remaining numbers are indicated in the legend of Fig. 4a; 
4) T. = 1.860; b"= 0.4982; w. = 19.27; x = 110,290.48; nl = 2.5172; T E [1.85; 1.90 ], c I E [0.4835; 0.5535 ]. 

As seen from Fig. 4, there is a fairly good (from the viewpoint of the adopted model representations of the 

process) quantitative agreement between the theoretical and experimental results. The calculated curves obtained 
have the same qualitative properties as those observed in experiments: 1) a monotonic increase in T i - 7". with an 

increase in qj (Fig. 4a); 2) as the background temperature T. increases, the dependence of q j  on N - w .  becomes 

steeper (Figs. 4b and 4e); in this case these curves touch the horizontal axis and are convex downward. 

Conclusions. We obtained a thermophysically informative set of divergent forms of equations in terms of 

which it is possible to write one-dimensional equations of relaxation heat transfer. For thermal shock waves of 

heating and cooling we established the characteristic features of the behavior of the Hugoniot lines and of the 

isolines of entropy production, as well as the dependences of heat flux on temperature. A comparison is made of 

theoretical calculations with experiments known in literature on the propagation of waves in nonlinear media, and 
the efficiency of the Maxwell model of relaxation heat transfer is shown. 

N O T A T I O N  

T, temperature; q, specific heat flux; t, time; x, Cartesian (radial) coordinate; 2, thermal conductivity 

coefficient; c, specific volumetric heat capacity; qv, power of internal heat sources; 7, time of heat flux relaxation; 

w, velocity of heat propagation; v = 0, 1, 2, parameter characterizing the symmetry type (plane, cylindrical, and 
spherical); the braces denote the difference between the values of the quantity enclosed in the braces on both sides 

of the discontinuity. Subscripts and superscripts: dots above the symbol of the function denote ordinary 

differentiation with respect to its a rgumen t ; . ,  parameters of the background through which the shock wave 
propagates; j, values of the functions behind the discontinuity front. 
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